If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-37.5=15t-4.9t^2
We move all terms to the left:
-37.5-(15t-4.9t^2)=0
We get rid of parentheses
4.9t^2-15t-37.5=0
a = 4.9; b = -15; c = -37.5;
Δ = b2-4ac
Δ = -152-4·4.9·(-37.5)
Δ = 960
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{960}=\sqrt{64*15}=\sqrt{64}*\sqrt{15}=8\sqrt{15}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-8\sqrt{15}}{2*4.9}=\frac{15-8\sqrt{15}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+8\sqrt{15}}{2*4.9}=\frac{15+8\sqrt{15}}{9.8} $
| 5+3x=-3-7(x+10) | | -12=-2x-6 | | 3x5+8=76-5 | | 3x2+18x+2=0. | | 9h-8=28 | | 5x+9x+22=180 | | 7x2+4x+6=0. | | 10x-10=6x-12x | | x+(-11)=13= | | 6s^2+9s+3=0 | | 7,5x+3=15 | | −5.2t=-3.25 | | 8x2+5x+19=0. | | 13x–14=15x+6 | | -16.1=10t-4.9t^2 | | -1=2x-9 | | x-(-9)=24= | | 3m^2-7m-7=0 | | 5-(2x+1=10 | | 6m(-5-m)=0 | | 100=4(b-59) | | 4x-14÷5=-6+6x+10÷4= | | 100=4(b-59 | | 12=g/4 | | 30=12+9d | | 6+7x=-1-12(x+3) | | 2(3+x)-3(x-2)x=0 | | j^2-4j=21 | | -5(1-v)=-10+4v | | (6x-18)+3x=90 | | 3z-7z=50 | | 2=2y−4 |